我们介绍了DeepNash,这是一种能够学习从头开始播放不完美的信息游戏策略的自主代理,直到人类的专家级别。 Stratego是人工智能(AI)尚未掌握的少数标志性棋盘游戏之一。这个受欢迎的游戏具有$ 10^{535} $节点的巨大游戏树,即,$ 10^{175} $倍的$倍于GO。它具有在不完美的信息下需要决策的其他复杂性,类似于德克萨斯州Hold'em扑克,该扑克的游戏树较小(以$ 10^{164} $节点为单位)。 Stratego中的决策是在许多离散的动作上做出的,而动作与结果之间没有明显的联系。情节很长,在球员获胜之前经常有数百次动作,而Stratego中的情况则不能像扑克中那样轻松地分解成管理大小的子问题。由于这些原因,Stratego几十年来一直是AI领域的巨大挑战,现有的AI方法几乎没有达到业余比赛水平。 Deepnash使用游戏理论,无模型的深钢筋学习方法,而无需搜索,该方法学会通过自我播放来掌握Stratego。 DeepNash的关键组成部分的正则化NASH Dynamics(R-NAD)算法通过直接修改基础多项式学习动力学来收敛到近似NASH平衡,而不是围绕它“循环”。 Deepnash在Stratego中击败了现有的最先进的AI方法,并在Gravon Games平台上获得了年度(2022年)和历史前3名,并与人类专家竞争。
translated by 谷歌翻译
基于模型的强化学习的关键承诺之一是使用世界内部模型拓展到新颖的环境和任务中的预测。然而,模型的代理商的泛化能力尚不清楚,因为现有的工作在基准测试概括时专注于无模型剂。在这里,我们明确测量模型的代理的泛化能力与其无模型对应物相比。我们专注于Muzero(Schrittwieser等,2020),强大的基于模型的代理商的分析,并评估其在过程和任务泛化方面的性能。我们确定了一个程序概括规划,自我监督代表学习和程序数据分集的三个因素 - 并表明通过组合这些技术,我们实现了普通的最先进的概括性和数据效率(Cobbe等人。,2019)。但是,我们发现这些因素并不总是为Meta-World中的任务泛化基准提供相同的益处(Yu等人,2019),表明转移仍然是一个挑战,可能需要不同的方法而不是程序泛化。总的来说,我们建议建立一个推广的代理需要超越单任务,无模型范例,并朝着在丰富,程序,多任务环境中培训的基于自我监督的模型的代理。
translated by 谷歌翻译
Estimating and optimizing Mutual Information (MI) is core to many problems in machine learning; however, bounding MI in high dimensions is challenging. To establish tractable and scalable objectives, recent work has turned to variational bounds parameterized by neural networks, but the relationships and tradeoffs between these bounds remains unclear. In this work, we unify these recent developments in a single framework. We find that the existing variational lower bounds degrade when the MI is large, exhibiting either high bias or high variance. To address this problem, we introduce a continuum of lower bounds that encompasses previous bounds and flexibly trades off bias and variance. On high-dimensional, controlled problems, we empirically characterize the bias and variance of the bounds and their gradients and demonstrate the effectiveness of our new bounds for estimation and representation learning.
translated by 谷歌翻译